Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicology ; 501: 153694, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043774

RESUMEN

Multiple new approach methods (NAMs) are being developed to rapidly screen large numbers of chemicals to aid in hazard evaluation and risk assessments. High-throughput transcriptomics (HTTr) in human cell lines has been proposed as a first-tier screening approach for determining the types of bioactivity a chemical can cause (activation of specific targets vs. generalized cell stress) and for calculating transcriptional points of departure (tPODs) based on changes in gene expression. In the present study, we examine a range of computational methods to calculate tPODs from HTTr data, using six data sets in which MCF7 cells cultured in two different media formulations were treated with a panel of 44 chemicals for 3 different exposure durations (6, 12, 24 hr). The tPOD calculation methods use data at the level of individual genes and gene set signatures, and compare data processed using the ToxCast Pipeline 2 (tcplfit2), BMDExpress and PLIER (Pathway Level Information ExtractoR). Methods were evaluated by comparing to in vitro PODs from a validated set of high-throughput screening (HTS) assays for a set of estrogenic compounds. Key findings include: (1) for a given chemical and set of experimental conditions, tPODs calculated by different methods can vary by several orders of magnitude; (2) tPODs are at least as sensitive to computational methods as to experimental conditions; (3) in comparison to an external reference set of PODs, some methods give generally higher values, principally PLIER and BMDExpress; and (4) the tPODs from HTTr in this one cell type are mostly higher than the overall PODs from a broad battery of targeted in vitro ToxCast assays, reflecting the need to test chemicals in multiple cell types and readout technologies for in vitro hazard screening.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Estrógenos , Línea Celular , Medición de Riesgo/métodos
2.
Toxicol Sci ; 181(1): 68-89, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33538836

RESUMEN

New approach methodologies (NAMs) that efficiently provide information about chemical hazard without using whole animals are needed to accelerate the pace of chemical risk assessments. Technological advancements in gene expression assays have made in vitro high-throughput transcriptomics (HTTr) a feasible option for NAMs-based hazard characterization of environmental chemicals. In this study, we evaluated the Templated Oligo with Sequencing Readout (TempO-Seq) assay for HTTr concentration-response screening of a small set of chemicals in the human-derived MCF7 cell model. Our experimental design included a variety of reference samples and reference chemical treatments in order to objectively evaluate TempO-Seq assay performance. To facilitate analysis of these data, we developed a robust and scalable bioinformatics pipeline using open-source tools. We also developed a novel gene expression signature-based concentration-response modeling approach and compared the results to a previously implemented workflow for concentration-response analysis of transcriptomics data using BMDExpress. Analysis of reference samples and reference chemical treatments demonstrated highly reproducible differential gene expression signatures. In addition, we found that aggregating signals from individual genes into gene signatures prior to concentration-response modeling yielded in vitro transcriptional biological pathway altering concentrations (BPACs) that were closely aligned with previous ToxCast high-throughput screening assays. Often these identified signatures were associated with the known molecular target of the chemicals in our test set as the most sensitive components of the overall transcriptional response. This work has resulted in a novel and scalable in vitro HTTr workflow that is suitable for high-throughput hazard evaluation of environmental chemicals.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Transcriptoma , Animales , Bioensayo , Biología Computacional , Humanos , Medición de Riesgo
3.
Toxicol Sci ; 180(2): 198-211, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33555348

RESUMEN

FutureTox IV, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2018. Building upon FutureTox I, II, and III, this conference focused on the latest science and technology for in vitro profiling and in silico modeling as it relates to predictive developmental and reproductive toxicity (DART). Publicly available high-throughput screening data sets are now available for broad in vitro profiling of bioactivities across large inventories of chemicals. Coupling this vast amount of mechanistic data with a deeper understanding of molecular embryology and post-natal development lays the groundwork for using new approach methodologies (NAMs) to evaluate chemical toxicity, drug efficacy, and safety assessment for embryo-fetal development. NAM is a term recently adopted in reference to any technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment to avoid the use of intact animals (U.S. Environmental Protection Agency [EPA], Strategic plan to promote the development and implementation of alternative test methods within the tsca program, 2018, https://www.epa.gov/sites/production/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf). There are challenges to implementing NAMs to evaluate chemicals for developmental toxicity compared with adult toxicity. This forum article reviews the 2018 workshop activities, highlighting challenges and opportunities for applying NAMs for adverse pregnancy outcomes (eg, preterm labor, malformations, low birth weight) as well as disorders manifesting postnatally (eg, neurodevelopmental impairment, breast cancer, cardiovascular disease, fertility). DART is an important concern for different regulatory statutes and test guidelines. Leveraging advancements in such approaches and the accompanying efficiencies to detecting potential hazards to human development are the unifying concepts toward implementing NAMs in DART testing. Although use of NAMs for higher level regulatory decision making is still on the horizon, the conference highlighted novel testing platforms and computational models that cover multiple levels of biological organization, with the unique temporal dynamics of embryonic development, and novel approaches for estimating toxicokinetic parameters essential in supporting in vitro to in vivo extrapolation.


Asunto(s)
Pruebas de Toxicidad , Toxicología , Animales , Niño , Simulación por Computador , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Embarazo , Medición de Riesgo , Estados Unidos , United States Environmental Protection Agency
4.
SLAS Discov ; 26(2): 292-308, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32862757

RESUMEN

Phenotypic profiling assays are untargeted screening assays that measure a large number (hundreds to thousands) of cellular features in response to a stimulus and often yield diverse and unanticipated profiles of phenotypic effects, leading to challenges in distinguishing active from inactive treatments. Here, we compare a variety of different strategies for hit identification in imaging-based phenotypic profiling assays using a previously published Cell Painting data set. Hit identification strategies based on multiconcentration analysis involve curve fitting at several levels of data aggregation (e.g., individual feature level, aggregation of similarly derived features into categories, and global modeling of all features) and on computed metrics (e.g., Euclidean and Mahalanobis distance metrics and eigenfeatures). Hit identification strategies based on single-concentration analysis included measurement of signal strength (e.g., total effect magnitude) and correlation of profiles among biological replicates. Modeling parameters for each approach were optimized to retain the ability to detect a reference chemical with subtle phenotypic effects while limiting the false-positive rate to 10%. The percentage of test chemicals identified as hits was highest for feature-level and category-based approaches, followed by global fitting, whereas signal strength and profile correlation approaches detected the fewest number of active hits at the fixed false-positive rate. Approaches involving fitting of distance metrics had the lowest likelihood for identifying high-potency false-positive hits that may be associated with assay noise. Most of the methods achieved a 100% hit rate for the reference chemical and high concordance for 82% of test chemicals, indicating that hit calls are robust across different analysis approaches.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Algoritmos , Bioensayo/métodos , Técnicas de Cultivo de Célula , Análisis por Conglomerados , Descubrimiento de Drogas/normas , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Modelos Teóricos , Reproducibilidad de los Resultados , Flujo de Trabajo
5.
Regul Toxicol Pharmacol ; 109: 104510, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31676319

RESUMEN

Synthesis of 11 steroid hormones in human adrenocortical carcinoma cells (H295R) was measured in a high-throughput steroidogenesis assay (HT-H295R) for 656 chemicals in concentration-response as part of the US Environmental Protection Agency's ToxCast program. This work extends previous analysis of the HT-H295R dataset and model by examining the utility of a novel prioritization metric based on the Mahalanobis distance that reduced these 11-dimensional data to 1-dimension via calculation of a mean Mahalanobis distance (mMd) at each chemical concentration screened for all hormone measures available. Herein, we evaluated the robustness of mMd values, and demonstrate that covariance and variance of the hormones measured appear independent of the chemicals screened and are inherent to the assay; the Type I error rate of the mMd method is less than 1%; and, absolute fold changes (up or down) of 1.5 to 2-fold have sufficient power for statistical significance. As a case study, we examined hormone responses for aromatase inhibitors in the HT-H295R assay and found high concordance with other ToxCast assays for known aromatase inhibitors. Finally, we used mMd and other ToxCast cytotoxicity data to demonstrate prioritization of the most selective and active chemicals as candidates for further in vitro or in silico screening.


Asunto(s)
Inhibidores de la Aromatasa/toxicidad , Disruptores Endocrinos/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Esteroides/biosíntesis , Línea Celular Tumoral , Interpretación Estadística de Datos , Conjuntos de Datos como Asunto , Reacciones Falso Positivas , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Reproducibilidad de los Resultados , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Estados Unidos , United States Environmental Protection Agency/normas
6.
Sci Rep ; 9(1): 14273, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582816

RESUMEN

The protein otoferlin plays an essential role at the sensory hair cell synapse. Mutations in otoferlin result in deafness and depending on the species, mild to strong vestibular deficits. While studies in mouse models suggest a role for otoferlin in synaptic vesicle exocytosis and endocytosis, it is unclear whether these functions are conserved across species. To address this question, we characterized the impact of otoferlin depletion in zebrafish larvae and found defects in synaptic vesicle recycling, abnormal synaptic ribbons, and higher resting calcium concentrations in hair cells. We also observed abnormal expression of the calcium binding hair cell genes s100s and parvalbumin, as well as the nogo related proteins rtn4rl2a and rtn4rl2b. Exogenous otoferlin partially restored expression of genes affected by endogenous otoferlin depletion. Our results suggest that in addition to vesicle recycling, depletion of otoferlin disrupts resting calcium levels, alters synaptic ribbon architecture, and perturbs transcription of hair cells specific genes during zebrafish development.


Asunto(s)
Calcio/metabolismo , Sinapsis/metabolismo , Pez Cebra/metabolismo , Animales , Eliminación de Gen , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Sinapsis/genética , Sinapsis/patología , Transcriptoma , Pez Cebra/genética
8.
Reprod Toxicol ; 77: 80-93, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29458080

RESUMEN

There continues to be a need to develop in vivo high-throughput screening (HTS) and computational methods to screen chemicals for interaction with the estrogen, androgen, and thyroid pathways and as complements to in vitro HTS assays. This study explored the utility of an embryonic zebrafish HTS approach to identify and classify endocrine bioactivity using phenotypically-anchored transcriptome profiling. Transcriptome analysis was conducted on zebrafish embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at concentrations that elicited adverse malformations or mortality at 120 h post-fertilization in 80% of animals exposed. Analysis of the top 1000 significant differentially expressed transcripts and developmental toxicity profiles across all treatments identified a unique transcriptional and phenotypic signature for thyroid hormone receptor agonists. This unique signature has the potential to be used as a tiered in vivo HTS and may aid in identifying chemicals that interact with the thyroid hormone receptor.


Asunto(s)
Disruptores Endocrinos/toxicidad , Ensayos Analíticos de Alto Rendimiento , Hormonas/toxicidad , Receptores de Hormona Tiroidea/agonistas , Transcriptoma/efectos de los fármacos , Pez Cebra/genética , Andrógenos/toxicidad , Animales , Embrión no Mamífero/efectos de los fármacos , Estrógenos/toxicidad , Perfilación de la Expresión Génica , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
9.
Toxicol Sci ; 162(2): 509-534, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216406

RESUMEN

The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program and the Organization for Economic Co-operation and Development (OECD) have used the human adrenocarcinoma (H295R) cell-based assay to predict chemical perturbation of androgen and estrogen production. Recently, a high-throughput H295R (HT-H295R) assay was developed as part of the ToxCast program that includes measurement of 11 hormones, including progestagens, corticosteroids, androgens, and estrogens. To date, 2012 chemicals have been screened at 1 concentration; of these, 656 chemicals have been screened in concentration-response. The objectives of this work were to: (1) develop an integrated analysis of chemical-mediated effects on steroidogenesis in the HT-H295R assay and (2) evaluate whether the HT-H295R assay predicts estrogen and androgen production specifically via comparison with the OECD-validated H295R assay. To support application of HT-H295R assay data to weight-of-evidence and prioritization tasks, a single numeric value based on Mahalanobis distances was computed for 654 chemicals to indicate the magnitude of effects on the synthesis of 11 hormones. The maximum mean Mahalanobis distance (maxmMd) values were high for strong modulators (prochloraz, mifepristone) and lower for moderate modulators (atrazine, molinate). Twenty-five of 28 reference chemicals used for OECD validation were screened in the HT-H295R assay, and produced qualitatively similar results, with accuracies of 0.90/0.75 and 0.81/0.91 for increased/decreased testosterone and estradiol production, respectively. The HT-H295R assay provides robust information regarding estrogen and androgen production, as well as additional hormones. The maxmMd from this integrated analysis may provide a data-driven approach to prioritizing lists of chemicals for putative effects on steroidogenesis.


Asunto(s)
Disruptores Endocrinos/toxicidad , Estrógenos/biosíntesis , Ensayos Analíticos de Alto Rendimiento , Testosterona/biosíntesis , Línea Celular Tumoral , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/administración & dosificación , Disruptores Endocrinos/clasificación , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/estadística & datos numéricos , Humanos , Organización para la Cooperación y el Desarrollo Económico , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estados Unidos , United States Environmental Protection Agency
10.
Chem Res Toxicol ; 30(2): 508-515, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-27957850

RESUMEN

Monosubstituted isopropylated triaryl phosphate (mITP) is a major component of Firemaster 550, an additive flame retardant mixture commonly used in polyurethane foams. Developmental toxicity studies in zebrafish established mITP as the most toxic component of FM 550, which causes pericardial edema and heart looping failure. Mechanistic studies showed that mITP is an aryl hydrocarbon receptor (AhR) ligand; however, the cardiotoxic effects of mITP were independent of the AhR. We performed comparative whole genome transcriptomics in wild-type and ahr2hu3335 zebrafish, which lack functional ahr2, to identify transcriptional signatures causally involved in the mechanism of mITP-induced cardiotoxicity. Regardless of ahr2 status, mITP exposure resulted in decreased expression of transcripts related to the synthesis of all-trans-retinoic acid and a host of Hox genes. Clustered gene ontology enrichment analysis showed unique enrichment in biological processes related to xenobiotic metabolism and response to external stimuli in wild-type samples. Transcript enrichments overlapping both genotypes involved the retinoid metabolic process and sensory/visual perception biological processes. Examination of the gene-gene interaction network of the differentially expressed transcripts in both genetic backgrounds demonstrated a strong AhR interaction network specific to wild-type samples, with overlapping genes regulated by retinoic acid receptors (RARs). A transcriptome analysis of control ahr2-null zebrafish identified potential cross-talk among AhR, Nrf2, and Hif1α. Collectively, we confirmed that mITP is an AhR ligand and present evidence in support of our hypothesis that mITP's developmental cardiotoxic effects are mediated by inhibition at the RAR level.


Asunto(s)
Retardadores de Llama/toxicidad , Toxicogenética , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Pez Cebra/genética
11.
Toxicol Appl Pharmacol ; 308: 32-45, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27538710

RESUMEN

Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120hours post-fertilization (hpf) and the concentration where 80% of the animals had mortality or morbidity at 120hpf (EC80) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC80 (7.37µM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value≤0.05; fold change ≥2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies.


Asunto(s)
Antiinfecciosos Locales/farmacología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Transcriptoma , Triclosán/farmacología , Pez Cebra/embriología , Animales , Antiinfecciosos Locales/toxicidad , Encéfalo/metabolismo , Humanos , Hígado/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Teratógenos/toxicidad , Triclosán/toxicidad , Pez Cebra/genética
12.
Environ Pollut ; 216: 53-63, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27239688

RESUMEN

Tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame retardants (BFRs), is a ubiquitous contaminant in the environment and in the human body. This study demonstrated that zebrafish embryos exposed to TBBPA during a sensitive window of 8-48 h post-fertilization (hpf) displayed morphological malformations and mortality. Zebrafish exposed exclusively between 48 and 96 hpf were phenotypically normal. TBBPA was efficiently absorbed and accumulated in zebrafish embryos, but was eliminated quickly when the exposure solution was removed. Larval behavior assays conducted at 120 hpf indicated that exposure to 5 µM TBBPA from 8 to 48 hpf produced larvae with significantly lower average activity and speed of movement in the normal condition than in those exposed from 48 to 96 hpf. Specifically, 8-48 hpf-exposed larvae spent significantly less time in both activity bursts and gross movements compared to control or 48-96 hpf exposed larvae. Consistent with the motor deficits, TBBPA induced apoptotic cell death, delayed cranial motor neuron development, inhibited primary motor neuron development and loosed muscle fiber during the early developmental stages. To further explore TBBPA-induced developmental and neurobehavioral toxicity, RNA-Seq analysis was used to identify early transcriptional changes following TBBPA exposure. In total, 1969 transcripts were significantly differentially expressed (P < 0.05, FDR < 0.05, 1.5-FC) upon TBBPA exposure. Functional and pathway analysis of the TBBPA transcriptional profile identified biological processes involved in nerve development, muscle filament sliding and contraction, and extracellular matrix disassembly and organization changed significantly. In addition, TBBPA also led to an elevation in the expression of genes encoding uridine diphosphate glucuronyl transferases (ugt), which could affect thyroxine (T4) metabolism and subsequently lead to neurobehavioral changes. In summary, TBBPA exposure during a narrow, sensitive developmental window perturbs various molecular pathways and results in neurobehavioral deficits in zebrafish.


Asunto(s)
Retardadores de Llama/toxicidad , Bifenilos Polibrominados/toxicidad , Pez Cebra/fisiología , Animales , Conducta Animal/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/fisiología , Retardadores de Llama/farmacocinética , Larva/efectos de los fármacos , Larva/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Bifenilos Polibrominados/farmacocinética , Pez Cebra/embriología
13.
Toxicol Sci ; 145(1): 177-95, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25711236

RESUMEN

The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to many flame retardants currently in use and can be used to understand potential vulnerabilities to human health.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Retardadores de Llama/toxicidad , Halógenos/toxicidad , Compuestos Organofosforados/toxicidad , Pez Cebra/embriología , Animales , Conducta Animal , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...